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Abstract

Simulations of dense melts of coarse-grained chains have been modified so that they contain filler particles. Since the filler particles and

matrix chains are constructed from the same repeat unit, all of the intermolecular energetic interactions in the system (filler–filler, filler–

matrix, matrix–matrix) are identical. The collapse of individual chains to form filler particles is achieved by a simple modification in the

strength of the minimum in the Lennard–Jones potential governing pair-wise intramolecular interactions within a filler particle. Even when

completely collapsed, the filler particles retain mobility in their internal degrees of freedom. Their centers of mass are also mobile. The filler

particles can be collapsed completely to dense, impenetrable objects, but they can also be collapsed incompletely to produce permeable filler

particles.

There is no evidence for spontaneous aggregation of impermeable filler particles, but sufficiently permeable filler particles can aggregate.

The parameters used in the simulations insure that the aggregation cannot be energetically driven. Matrix chains that fill space within a

permeable filler particle have severe restrictions placed on their available conformations. The reduction in the conformational entropy of the

matrix chains can be alleviated if the permeable filler particles interpenetrate, or aggregate. Then fewer matrix chains must enter the

permeable filler particles in order to maintain the density of the system. The simulation detects no aggregation of impermeable filler particles

because it is not necessary for matrix chains to enter completely collapsed particles.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The importance of filled polymers has prompted

numerous studies that characterize the dramatic effects of

the filler particles on the physical properties of the system.

Simulations of filled polymers have been performed using

molecular dynamics (for example, Starr et al. [1] and Brown

et al. [2]) and Monte Carlo (for example, Mark and co-

workers [3,4] and Vacatello [5,6]) techniques. Often the

filler particle and the matrix chains are not represented in

atomistic detail. The filler particle may be represented by a

simple impenetrable object, such as a sphere [3–6] or

icosahedron [1], with an undefined internal composition.

Matrix chains are often represented by a bead-spring model

[1,2,5,6], and therefore cannot unambiguously be identified

with a specific polymer. Sometimes the chain (but not the
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particle) is represented with sufficient detail so that it can be

identified with a real polymer, such as polydimethylsiloxane

[3] or polyethylene [4], and sometime the particle (but not

the chain) can be identified with a real material, such as

silica [2]. Since the qualitative results can depend

dramatically on the method and/or model employed [5], it

seems worthwhile to develop simulation methods in which

both the filler particle and matrix chains can be unambigu-

ously identified with specific real materials. Here we

describe one approach by which this goal can be achieved.

The method by which our nanoparticles are created in the

simulation is based on a well-known phenomenon seen with

polymers in dilute solution. The collapse of individual

polymer chains, sometimes described as the coil-to-globule

transition, has been studied extensively in dilute solution,

using experiment [7–12], theory [13], and simulation [14].

A change in solvent power from better than a Q solvent to

new conditions that are worse than a Q solvent will induce

the transition. This change in solvent power is often induced

by a change in the temperature, T, as illustrated by

polystyrene in cyclohexane [7,8], poly(N-isopropyl-
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acrylamide) in water [9,10], and poly(methyl methacrylate)

in isoamyl acetate [11] or acetonitrile [12]. Experimental

characterization of the purely intramolecular transition

requires great care to properly take account of the influence

of the polydispersity of real samples [8] and avoid the

influence of intermolecular interactions that lead to

aggregation [7]. The influence of aggregation is minimized

by the experimental study of extremely dilute solutions of

samples of very high molecular weight, M. Although

measurements show that the mean square radius of gyration,

hs2i, approaches the M2/3 dependence expected for com-

pletely collapsed chains, the collapsed chains remain

permeable to solvent [8].

With the assistance of intramolecular crosslinks, it is

possible to also study systems in which collapsed chains

coexist with uncollapsed chains in the Q environment

provided by chemically similar, but uncrosslinked, chains.

This system can be realized in the laboratory by the

introduction of an extensively intramolecularly crosslinked

polystyrene nanoparticle into a system composed of linear

polystyrene chains [15]. The constraints imposed by the

intramolecular crosslinks do not allow the nanoparticle to

recover the unperturbed, or Q, dimensions expected for a

chain in an uncrosslinked melt.

A melt composed exclusively of chains that are all

constructed from the same repeat unit, but under constraints

that enforce a collapse on some of the chains, provides an

entrée to potentially illuminating studies concerning the

fundamental interactions in filled polymers. Any modifi-

cation of the behavior of the uncollapsed chains cannot be

due to a special energetic interaction between the matrix

chains and filler particles, because the ‘particles’ and free

chains are constructed from the same repeat unit.

Simulations of this system will allow a clean separation of

effects arising from the physical space occupied by the filler

particle, as opposed to any effects arising from the energetic

interaction of the filler particle with the free chains.

Furthermore, since the degree of collapse of such filler

particles can be carefully controlled in a simulation, one can

monitor how the special characteristics of a filled system are

produced as specified chains in the system progress

gradually through the sequence unperturbed free chains/
partially collapsed, permeable filler particles/completely

collapsed, impermeable filler particles. Depending on the

physical property of the system that is monitored, the

change in the property might be monotonic, sigmoid, or

perhaps of more complex character, as the collapse of the

‘filler’ becomes more complete. Of course, the filler particle

should not be collapsed to an unphysical density that is

higher than the value expected for the melt. This

requirement is easily met.

We describe here the preparation of one-component

filled systems in which all of the chains in the melts are

coarse-grained versions of either polyethylene (PE) or

polyoxyethylene (POE), but with a subset of the chains

collapsed to varying degrees. The collapse is entirely
intramolecular in origin. All pair wise intermolecular

interactions between beads are independent of whether the

beads reside on collapsed or uncollapsed chains.
2. Simulation method

All of the Monte Carlo (MC) simulations are performed

using a bridging method [16] that allows reversible

description of the system by coarse-grained chains on a

sparsely occupied high coordination lattice or by atomisti-

cally detailed chains at bulk density in continuous space

[17]. Each coarse-grained bead represents two consecutive

chain atoms and their pendant hydrogen atoms. The high

coordination lattice, with 10i2C2 sites in shell i, has a step

length of 0.250 nm for PE [18] and 0.239 nm for POE [19].

Bulk density, r, for PE melts and POE melts at the T of the

simulations (453 K for PE, 373 K for POE) is obtained by

occupancy of 18% [20] and 20% [19], respectively, of the

sites on the high-coordination lattice.

The short-range intramolecular interactions are con-

trolled by the first- and second-order interactions in

rotational isomeric state (RIS) models for PE [21] and

POE [22]. These RIS models are mapped onto the coarse-

grained description of the chains on the high coordination

lattice [23]. Longer range intramolecular interactions, and

all intermolecular interactions, are controlled by a dis-

cretized Lennard–Jones (LJ) potential energy function. In

addition to disallowing double occupancy of any site, this

function has a set of shell energies, denoted ui for shell i, that

reproduce the second virial coefficient specified by an input

continuous LJ potential of the form in Eq. (1) [20].

ULJ Z 43
s

r

� �12

K
s

r

� �6
� �

(1)

The input LJ potentials use sZ0.44 nm and 3/kBZ185 K

for PE, and sZ0.376 nm and 3/kBZ154 K for POE. At the

temperatures of the simulations, these LJ potentials specify

u1Z14.426, u2Z0.558, and u3ZK0.626 kJ/mol for PE,

and u1Z8.113, u2ZK0.213, and u3ZK0.339 kJ/mol for

POE. The ui for iO3, which are negative and smaller in

absolute value than u3, were ignored in the present

simulations [19,20].

For those chains that are to collapse to become filler

particles, u3 is separated into two terms, denoted u3, inter and

u3, intra, in the manner sketched in Fig. 1. The u3, intra is used

for the long-range intramolecular interactions (intra-

molecular interactions that were not treated explicitly with

the RIS model) within this particular collapsed chain, and

u3, inter is used for the long-range intermolecular interactions

between a bead on the collapsed chain and a bead on any

other chain, independent of whether that other chain is also

collapsed or is instead an unperturbed matrix chain. Since

the value of u3, inter remains the same as the value of u3
specified in the previous paragraph, the discretized LJ



Fig. 1. Sketch showing the usage of u3, interZu3 and u3, intra.
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potential for all intermolecular interactions is unaffected by

the formation of collapsed chains. However, pairs of beads

within a particular collapsed chain are subject to their own

special value of u3, with the strength of this interaction

controlled by l.

u3; intra Z lu3; inter (2)

When lO1, there is an enhancement of the attraction

between two beads from the collapsed chain when they are

separated by a distance that produces the most negative

energies in the discretized LJ potential. This extra

intramolecular attraction causes a reduction in hs2i for the

collapsed chain. If l is made large enough, the value of hs2i

will approach (3/5)(3vM/4pNA)
2/3, which is the value

expected for a uniform sphere with the mass (M/NA) and

partial specific volume (vZ1/r) of the collapsed chain. The

collapse is a continuous process, since l is a continuous

variable. The collapse is also purely of intramolecular

origin, since u3, inter retains the value expected for

uncollapsed chains in the melt. The energetically driven

aggregation of collapsed chains, which is a formidable

problem in the experimental study of the coil-to-globule

transition in dilute solution, is shut down completely in the

present simulations by the assignment u3, interZu3.

The Metropolis MC simulation [24] used single bead

moves [17] and pivot moves for 2–6 beads [25]. If X and Y

denote chain atoms that are (X) or are not (Y) retained in the

coarse-grained description, there are rare conformations of

the atomistically detailed sub chain X–Y–X–Y–X that avoid

placing any two X’s on the same site on the high-

coordination lattice, but nevertheless place both Y’s on

the same site on the underlying diamond lattice. These rare

conformations of the coarse-grained chain, which have been

termed ‘collapses’ [17,23], were specifically disallowed in

the present simulations. On average, each bead is tried once

for a single bead move, and once for a pivot move, during a

single MC step (MCS).
3. Collapse from equilibrated melts

The simulation of the filled systems begins with

equilibrated melts of PE or POE, i.e. systems equilibrated

using lZ1. The equilibration and characterization of these

melts has been described previously [17,19]. At the

beginning of the simulations of the filled systems, a

randomly chosen subset of the parent chains in the

equilibrated melt was subjected to the u3, intra specified by

Eq. (2), using lO1. The concentration of the filler particles,

xfiller, expressed as a volume (or mass) fraction, is the

fraction of the beads in the system that belongs to chains

subject to lO1. The remainder of the chains are

uncollapsed, with lZ1. The rate at which the filler chains

collapse is revealed by monitoring the values of their mean

square radii of gyration, hs2ifiller, as a function of the number

of MCS after the value of l is changed from 1 to a number

larger than 1.

Fig. 2 depicts hs2ifiller for POE melts in which all of the 43

parent chains are represented by 52 beads. The simulation

commences with an equilibrated melt where the chains have

a time-averaged mean square radius of gyration of 1.5 nm2.

The change in the numerical assignment for l from 1 to 2.5

occurs at 0 MCS. When the fluctuations are considered, the

limiting values of hs2ifiller are nearly independent of xfiller.

However, the rate at which the collapse is achieved depends

strongly on xfiller. The collapse is completed in about 105

MCS if xfillerZ0.05, but an order of magnitude more MCS is

required if xfillerZ0.60.

The dependence of the rate of collapse on xfiller is seen

also in a system with larger particles constructed from PE,

as shown in Fig. 3. In both Figs. 2 and 3, the slowing down

of the collapse is evident when xfillerZ0.60. There are some

important differences in the two systems. The collapse is

completed quickly (within 105–106 MCS, depending on

xfiller) for the POE system, but at least 107 MCS are required

for the collapse of the PE chains. This difference arises

because the individual PE particles are over three times

larger than the POE particles (174 and 52 beads,

respectively), PE is a stiffer chain than POE, and perhaps

also because the PE filler particles become more strongly

collapsed than the POE filler particles, as will be

documented in Section 4. The slowing down of the collapse

at xfillerZ0.60 might have contributions from two sources.

First, the rate at which a chain collapses may depend on

whether its neighbors remain uncollapsed, or whether they

are also undergoing an intramolecular collapse. Obviously,

it becomes more likely that neighboring chains also

experience the intramolecular collapse as the values of

xfiller increases. There might also be an effect from more

stringent requirements for the spatial arrangements of the

filler particles in the final state as xfiller increases. At small

values of xfiller the filler particles can be independent of one

another, but percolation may be achieved when xfiller
becomes as large as 0.60. The spatial requirements in the



Fig. 2. Collapse of POE filler particles at 373 K when all of the 43 parent chains are represented by 52 beads, lZ2.5, and xfiller is (:) 0.05, (B) 0.10, or ($)

0.60. The value of hs2i0 is 1.5 nm
2.
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percolating system may contribute to the final stages of the

slowing down of the collapse at xfillerZ0.60.
4. Properties of the collapsed filler particles

4.1. Extent of the collapse

There are differences in the magnitudes of the

fluctuations in hs2ifiller at 1 to 2 million MCS in Fig. 2 and

near 107 MCS for the smaller three of the four xfiller in Fig. 3.

These differences suggest larger fluctuations in the POE
Fig. 3. Collapse of PE filler particles of 174 beads at 453 K. The

uncollapsed parent chains are each represented by 58 beads. The value of l

is 2, and xfiller is (a) 0.24, (b) 0.36, (c) 0.48 or (d) 0.60. The value of hs
2i0 for

the filler particles before collapse is 6.9 nm2.
system. Interpretation of this result is facilitated by

specification of the extent of collapse that is achieved in

the two simulations. A convenient measure of the extent of

the collapse is provided by the dimensionless parameter

defined in Eq. (3) using the mean square unperturbed radius

of gyration of the chains in the melt equilibrated with lZ1,

denoted hs2i0, the instantaneous mean square radius of

gyration of the collapsed chains, denoted hs2ifiller, and the

anticipated squared radius of gyration for the dense sphere

with mass M/NA and partial specific volume v.

c Z
hs2i3=20 K hs2i3=2filler

hs2i3=20 K 3
5

� �3=2 3vM
4pNA

� � (3)

As defined, c measures the fractional change in the volumes

specified by the various radii of gyration, using limits of cZ
0 when there is no collapse whatsoever, and cZ1 upon

collapse to the dense impermeable sphere with mass M/NA

and partial specific volume v.

The average limiting values of c are about 0.80G0.06 for

the POE filler particles in Fig. 2, but c achieves values of

1.00G0.02 for the larger filler particles in Fig. 3. The values

of l employed in the simulations produce a more complete

collapse of the PE filler particles than the POE filler

particles. The PE filler particles are dense and impermeable,

with relatively small fluctuations in their sizes. In contrast,

the POE filler particles are less dense (and therefore

permeable), and experience larger fluctuations in size.

These differences should not be attributed to any special

characteristics of PE or POE, because a suitable increase in

the value of l for POE can produce POE filler particles with

c much closer to 1, as shown in Fig. 4.

The value of l required to produce a particular value of c



 

Fig. 4. Values of c after equilibration of a POE system at 373 K when the filler particles of 52 beads use various values of l. The values of xfiller are in the range

0.05–0.30.
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depends on M of the filler particles, as shown in Fig. 5 for

PE filler particles. Smaller values of l will suffice at larger

M. This behavior in the simulation is consistent with the

experimental observation in dilute solution that, for a

specified undercooling, a greater collapse is seen with

chains of higher M.

4.2. Mobility of the collapsed filler particles

If the same attempt rate is used for moves of all beads in

the system, the filler particles can remain mobile even when

they are collapsed to the extent where c is very close to one.

The internal mobility can be monitored using the

normalized autocorrelation function for the end-to-end
Fig. 5. Minimum values of l required to achieve cZ1.00G0.02 for PE filler

particles at 453 K.
vector, hr(tCt0)$r(t0)i/hr
2i, after completion of the collapse.

Examples are depicted in Fig. 6 for two PE systems,

showing separately the autocorrelation functions for the

impermeable particles and the uncollapsed matrix chains.

The relaxation times for the impermeable filler particles

become longer as the particles become larger, as expected.

The relaxation times for matrix chains of 58 beads are not

much different in systems with xfillerZ0.28G0.04 and

individual fillers that are either 0.26 or 3.00 times as

massive as a matrix chain.

The translational motion of the filler particles is
Fig. 6. Normalized autocorrelation functions for r in impermeable PE filler

particles collapsed to cZ1.00G0.02 at 453 K. The uncollapsed matrix

chains are represented by 58 beads. (a) Filler particles of 15 beads and (b)

matrix chains in the system with xfillerZ0.24. (c) Filler particles of 174

beads and (d) matrix chains in the system with xfillerZ0.32.
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monitored with the mean square displacement of their

centers of mass, h[Rcm(tCt0)KRcm(t0)]
2i. Fig. 7 depicts

these displacements for the impermeable PE particles that

were the subject of Fig. 6. Completely collapsed particles

can experience significant translation over the time period

of a simulation. The filler particles do not remain static at

arbitrarily chosen initial positions. During a simulation of

several million MCS, they can diffuse over distances

comparable with the linear dimension of the periodic box.

Of course, the filler particles in the simulation can be

rendered immobile by not attempting a move for any of their

beads. Also, they can be caused to move more rapidly,

relative to the matrix chains, simply by attempting more

moves for filler particles than for matrix chains. The results

in Figs. 6 and 7 were obtained using the same attempt rates

for all beads, independent of the chain in which they occur.
4.3. Preferred distributions of the filler particles

If only a single parent chain is collapsed to a filler

particle, the pattern formed by this filler particle and its

images is determined completely by the dimensions of the

periodic box, and is independent of any translational motion

of the single parent particle. However, when multiple parent

chains are collapsed, they can sample variously relation-

ships with respect to one another during the course of the

simulation. They have the option of adopting an ordered

arrangement, or instead sampling the wide variety of

configurations consistent with a random array of particles.

Since in Section 4.2 demonstrated that the centers of mass of

the particles can translate over distances comparable with

the dimension of a periodic box, it becomes pertinent to

inquire how they distribute themselves in the present
Fig. 7. Mean square displacements of the center of mass for impermeable

PE filler particles collapsed to cZ1.00G0.02 at 453 K. The uncollapsed

matrix chains are represented by 58 beads. (a) xfillerZ0.24 and filler

particles represented by 15 beads. (b) xfillerZ0.32 and filler particles

represented by 174 beads.
simulations, when the same attempt rate is used for moves

on all beads in the system. Since exactly the same

discretized LJ potential describes all of the intermolecular

interactions in the system, there can be no tendency for

organization of the particles due to special intermolecular

energetic effects. Nevertheless, it is still worthwhile to

investigate the spontaneous distributions assumed by the

filler particles, because even hard spheres adopt ordered

patterns at sufficiently high packing densities.

Intermolecular pair correlation functions (PCF’s) have a

long history of use in the search for and characterization of

intermolecular structure. In a perfectly crystalline system,

the PCF’s consist of discrete spikes that can be observed

even at large distances. This type of intermolecular PCF

would be obtained for the present system if it was evaluated

using the center of mass of the particles, and only one of the

parent chains was collapsed. The locations of the discrete

peaks would be determined completely by the size and

shape of the periodic box. If multiple parent chains are used,

the set of discrete peaks expected from the size and shape of

the periodic box is supplemented by additional information

that depends on the relationship between the positions of the

collapsed chains within a periodic box. It is that information

that we seek. When the intermolecular PCF is evaluated at

distances that do not exceed half of the length of a side of the

periodic box, is the PCF predominantly flat, with values

close to one (as expected for a random array of objects), or

are there pronounced maxima and minima (expected for a

nonrandom arrangement)?

In principal, a very interesting intermolecular PCF would

use the centers of mass of the individual nanoparticles. This

intermolecular PCF is pertinent to the issue of whether the

centers-of-mass are distributed randomly in the periodic

box, or instead prefer some nonrandom arrangement.

Unfortunately, that type of intermolecular PCF is not easily

extracted from our simulations with the desired accuracy,

due to the small number of individual parent nanoparticles

(2–22 in the simulations reported here), and the length of

time required to completely decorrelate one replica with

another (Fig. 7). The number of independent observations is

simply too small to generate intermolecular PCF’s with a

sufficiently small noise level, if the evaluation is based on

the centers of mass of the nanoparticles.

The number of observations increases strongly if the

intermolecular PCF’s use all of the beads in the

nanoparticles, some of the beads are near the center of

mass of each nanoparticle, but a larger number are likely to

be near the periphery. This type of PCF will retain

information about the arrangements of the centers of

mass, but now modified (perhaps strongly) by the potential

interaction of the periphery of one nanoparticle with the

periphery of another. Two limiting cases can be defined. If

the arrangements of the nanoparticles is as random as

possible, the intermolecular PCF will have very small

values at small r (because one nanoparticles tends to

exclude any other from the same position), will approach 1
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in the limit as r/N, and will show a weak (perhaps very

weak) maximum at intermediate r, to fulfill the requirement

that the integral of PCF—1 over all space must be zero.

Examples of intermolecular PCF’s, based on all of the beads

in the nanoparticles, that fulfill these requirements can be

observed in the simulations.

Fig. 8 depicts intermolecular pair correlation functions

for PE systems in which the Fig. 8 depicts intermolecular

pair correlation functions for PE systems in which the

matrix chains are represented by 58 beads and the

impermeable filler particles (collapsed to cZ1.00G0.02)

are represented by 174 beads. Curves a and c present the

intermolecular pair correlation functions calculated for filler

particle–filler particle interactions at two concentrations,

xfillerZ0.60 and 0.24, respectively, while curves b and d

represent the intermolecular pair correlation functions for

matrix chains–matrix chain interactions in the same two

systems. The matrix–matrix correlation functions have a

weak maximum in the third shell, which is consistent with

the ‘amorphous halo’ present in the intermolecular pair

correlation functions for simulations of pure melts of simple

polymeric hydrocarbons by this technique [26]. A very

different result is obtained with the intermolecular pair

correlation functions for beads in the impermeable filler

particles. The beads in the collapsed chains that represent

the impermeable filler particles have a much stronger

tendency to avoid one another than do the beads in

uncollapsed chains that represent the matrix chains. The

intermolecular pair correlation functions provide no

evidence for aggregation of the filler particles, even at

xfiller as high as 0.60.

There is also no evidence for aggregation of the filler in
Fig. 8. Intermolecular pair correlation functions for beads in the PE systems

at 453 K where the impermeable filler particles, with cZ1.00G0.02, are

represented by 174 beads and the matrix chains are represented by 58 beads.

For curves (a) and (b), xfillerZ0.60, and for curves (c) and (d), xfillerZ0.24.

The intermolecular pair correlations functions are for filler–filler in curves

(a) and (c), and for matrix–matrix in curves (b) and (d).
simulations with slightly permeable POE filler particles of

106 beads that are collapsed to cZ0.92G0.01, as shown in

Fig. 9. The particle–particle and matrix–matrix intermole-

cular pair correlation functions are nearly identical. The

situation changes with still smaller POE filler particles

(represented by 52 beads) that are even more permeable

(cZ0.85G0.02), as shown in Fig. 10. The intermolecular

pair correlation function now shows a strong peak when

xfillerZ0.2, and this peak is much larger than the weak peak

observed at the same position, and same value of xfiller, when

larger filler particles (106 vs. 52 beads) were more strongly

collapsed (c of 0.93 vs. c of 0.85), as seen in the comparison

of Figs. 9 and 10. A large peak in the intermolecular PCF at

the third shell can exist at xfillerZ0.2 if the interpenetration

at the periphery of penetrable particles is stronger than

would be expected from a random arrangement of objects. A

tendency for aggregation of the permeable nanoparticles

would be a prerequisite for the achievement of that

enhanced degree of interpenetration. As xfiller increases

toward the ‘overlap’ concentration for the permeable

particles, a point will be reached at which the amplitude

in the third shell of the intermolecular PCF decreases,

because the hypothetical random arrangement will also

produce a larger number of third shell intermolecular

interactions if the concentration is high enough. Even if the

probability for an intermolecular third shell interaction is

the same at xfillerZ0.2 and 0.5, the intermolecular PCF

would be smaller at the higher concentration because the

probability for this interaction in the hypothetical disordered

state would be larger at the higher value of xfiller.

The aggregation of the permeable filler particles at

intermediate values of xfiller cannot be energetically driven,

because all of the pair-wise intermolecular interactions are

exactly the same. The aggregation of permeable filler

particles, coupled with the absence of evidence for

aggregation of the impermeable filler particles, can be

rationalized by considering the conformational entropy of

the uncollapsed matrix chains. If the filler particles are

permeable, some of the matrix chains must occupy space

within an unaggregated filler particle in order to maintain

the density of the system. The number of conformations

available to a matrix chain will be severely restricted if it

must fill space within a permeable filler particle. This

adverse affect on the conformational entropy of the matrix

chains will drive interpenetration, or aggregation, of the

permeable filler particles, so that fewer matrix chains must

occupy the space within them. Of course, this effect requires

that xfiller be below the overlap concentration, so that the

matrix chains have access to space in the system that is not

influenced by the filler particles. The driving force for

aggregation is absent if the filler particles are impermeable,

which provides an explanation for why the simulation

detects spontaneous aggregation of sufficiently permeable

filler particles, but no aggregation of impermeable filler

particles.



Fig. 9. Intermolecular pair correlation functions for beads in slightly permeable (cZ0.92G0.01) POE filler particles at 373 K and values of xfiller of (6) 0.19

and (B) 0.23. Curve (C) depicts the intermolecular pair correlation function for the beads in the uncollapsed matrix chains. Filler particles and matrix chains

are represented by 106 beads.
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5. Conclusions

Models for permeable and impermeable filler particles

composed of intramolecularly collapsed chains of PE or

POE have been characterized. The extent of their collapse is

governed by the modification of the intramolecular

interaction between pairs of beads when the pair is separated

by a distance that produces the strongest attraction in an LJ

potential energy function. Complete collapse to dense

impermeable particles can be achieved. The collapsed filler

particles remain mobile in the amorphous environment

formed by uncollapsed matrix chains constructed from the

same repeat unit.

The simulation prohibits the energetically driven

aggregation of the filler particles. There is no evidence for
Fig. 10. Intermolecular pair correlation functions for beads in the permeable (cZ0.

0.21, and (6) 0.51. Filler particles and matrix chains are represented by 52 bead
aggregation of impermeable PE filler particles, even when

xfiller is as large as 0.60. POE filler particles also avoid

aggregation if they are collapsed to a sufficient degree.

However, aggregation at intermediate concentration is

detected if the filler particles are sufficiently permeable.

This aggregation is probably driven by the decrease in

conformational entropy of the uncollapsed matrix chains

when they must fill the unoccupied space within a

permeable filler particle.
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